「水」の版間の差分
(→水の分布) |
(rvv) |
||
24行目: | 24行目: | ||
[[固体]]は[[氷]]、液体は水、[[気体]]は[[水蒸気]]と呼ばれる。温度の高い液体の水を'''湯'''(ゆ)と言い、特に温度の高いものを'''熱湯'''(ねっとう)と言う。理・工学的な分野では'''熱水'''(ねっすい)という語も用いられる。 | [[固体]]は[[氷]]、液体は水、[[気体]]は[[水蒸気]]と呼ばれる。温度の高い液体の水を'''湯'''(ゆ)と言い、特に温度の高いものを'''熱湯'''(ねっとう)と言う。理・工学的な分野では'''熱水'''(ねっすい)という語も用いられる。 | ||
− | + | == 物理的性質 == | |
+ | {{right| | ||
+ | [[画像:Diag phase eau.svg|thumb|200px|'''水の三態''' 273.16 K、610.6 Paでは三態が共存する。この温度を水の三重点と呼ぶ]] | ||
+ | [[画像:2006-01-21 Detaching drop.jpg|thumb|200px|水が落下する瞬間]] | ||
+ | [[画像:Watermolecule.png|thumb|100px|各原子の距離と角度]] | ||
+ | [[画像:Water molecule.svg|thumb|100px|水分子の[[モデル (自然科学)|モデル]] ]] | ||
+ | }} | ||
+ | [[常温]]、[[大気圧]]下で僅かに青緑色を呈す透明な[[液体]]。1気圧の[[大気圧]]下での[[沸点]]は約100[[摂氏|{{℃}}]](より正確には99.974{{℃}})、[[融点]]は0{{℃}}(実際には99.974{{℃}}以下の[[水蒸気]]も、0{{℃}}以下の水も存在する)。3.98{{℃}}のとき最も[[比重]]が大きく、[[固体]]は[[液体]]より[[比重]]が小さい。そのため固体である[[氷]]は液体の水に浮き、氷に[[圧力]]をかけると融ける。これは多くの他の[[分子]]とは異なる水の特性であり、[[水分子]]間での[[水素結合]]によるものである。[[ヒドロキシル基]]を2つ持ち合わせている。液体の状態では 10<sup>−7</sup> (mol/L) (25{{℃}}) が[[電離]]し、[[陽子|水素イオン]](正確には[[オキソニウムイオン]])と[[水酸化物イオン]]となっている。一般に無色透明と言われる場合が多いが実際にはこの電離したイオンの関係でごく僅かな青緑色を呈す。<!--高温の氷は圧力をかけると液化する。--> | ||
− | + | [[沸点]]と[[融点]]が100{{℃}}と0{{℃}}というきりのいい数値であるのは、水の性質を基準として[[摂氏]]での温度の目盛りが定義されたためである。また、4{{℃}}のときの1cm<sup>3</sup>あたりの[[質量]]を基準に1g([[グラム]])を定義したり、1gの水の[[温度]]を1K(1{{℃}}の温度差)上げるのに必要な[[熱量]]を1cal([[カロリー]])と定めたりするなど、単位の基準に使われることが多かったが、不純物の存在による不正確さに加え、たとえば 1gを求める場合には、[[体積]]、[[圧力]]、[[温度]]を規定しないと正しい[[重量]]が得られないという本質的な[[精度]]の問題があるため([[キログラム]]を参照)、近年では一意に求めることができる水の[[三重点]]が1Kの基準となるのを除けば、基準としての役割はほとんどなくなっている。 | |
− | + | 水は[[比熱容量]]が非常に大きいことでも知られる。[[反磁性]]の性質を示す代表的な物質でもある。 | |
− | + | また、水は[[マイクロ波]]なども吸収しやすく、[[電子レンジ]]はそれを利用して加熱をしている。 | |
+ | |||
+ | === 亜臨界水・超臨界水 === | ||
+ | 水は22.1MPaの圧力をかけると374{{℃}} (647K) まで液体の状態を保つ。これを[[亜臨界]]水という。これ以上の圧力、温度の状態の水を[[超臨界]]水という。その性質は通常の状態と異なり[[イオン積]]が高く通常の水より[[水酸化物イオン]]の濃度が高くなる。また[[比誘電率]]が低い。その性質を利用のため研究されている。 | ||
+ | |||
+ | === 過冷却水 === | ||
+ | [[融点]](1気圧では[[摂氏]]0度)以下でも凍っていない、[[過冷却]]状態の液体の水のこと。不安定であり、[[振動]]などの物理的ショックにより[[結晶化]]を開始して[[氷]]に[[転移]]する。過冷却水の入っている容器にビー玉などを落とすと、ビー玉が底に着く前に全体が氷になる。 | ||
+ | |||
+ | === アモルファス氷 === | ||
+ | 非結晶の氷のこと。通常の氷は[[結晶]]であるが、液体からの急冷、結晶氷を加圧、あるいは気相からの[[蒸着]]などの方法により、非結晶の氷が生成される。密度の違う2つの状態が存在し、それぞれ、高密度[[アモルファス]]氷、低密度アモルファス氷という。 | ||
+ | |||
+ | == 化学的性質 == | ||
+ | 水素と酸素の[[電気陰性度]]の違いから、水分子においては酸素原子側が電気的に負となり、水分子の形から[[電気双極子]]を形成している。さらに共有結合に使われていない[[孤立電子対]]が2つ存在する。以上から水の比誘電率は 79.87 (20 ℃) と高い。このため[[塩化ナトリウム]]などのイオン結晶の結合を破壊し、すぐれた溶媒として働く。さらに水素-酸素結合は水素結合を形成しやすく、特に電気陰性度の高く結合に利用できる[[電子軌道]]が余っている原子とは容易に水素結合を作りやすい。したがって、[[糖]]など[[イオン性]]ではない分子に対する[[溶媒]]ともなる。このため、[[ベンゼン]]などの炭化水素はイオン性でもなく、水素結合を形成しないため、水には溶解せず分離してしまう。 | ||
+ | |||
+ | 以上、水はほかの物質を溶かしたり、溶けた物質の[[イオン化]]を促進する性質をもつことが分かる。このため[[溶媒]]としてよく使われる。また、多くの[[化学反応]]の[[触媒]]としても利用される。 | ||
+ | 天然の水には、僅かに[[重水]](D<sub>2</sub>O、多量に摂取すると生物には有害)が含まれている。水素の[[同位元素]]である[[重水素]]からなるものである。重水は、化学反応の標識によく使われる。 | ||
+ | |||
+ | == 生物と水 == | ||
+ | {{right| | ||
+ | [[Image:A girl in a swimming pool - underwater.jpg|thumb|200px|人間と水]] | ||
+ | [[Image:African waterfall.jpg|thumb|200px|水は生命の維持に欠かせない]] | ||
+ | }} | ||
+ | すべての既知の[[生命体]]にとって、水は不可欠な物質である。 | ||
+ | |||
+ | 生物体を構成する物質で、最も多くを占めるのが水である。[[細胞核|核]]や[[細胞質]]で最も多い物質でもあり、細胞内の物質[[代謝]]の媒体としても使用されている。通常、質量にして生物体の70%–80%が水によって占められている。生きている[[細胞]]には(理想的な[[溶媒]]である)水が多く含まれており、生命現象を司る[[化学反応]]の場を提供し、また水そのものが種々の化学反応の[[基質]]となっている。[[体液]]として、体内の物質輸送や分泌物、[[粘膜]]に用いられ、また高分子鎖と[[ゲル]]化することで体を支える構造体や[[レンズ]]にも利用されている。[[クマムシ]]のように厳しい環境にも耐えられる生物は、体内の水分を放出し、不活性な状態をつくり出すことができる。 | ||
+ | |||
+ | なお、[[生物]]は太古の海で誕生したと考えられている。生物の[[化学組成]]と[[海水]]の組成がにていることもその根拠の一つである。従って、水中生活が生物の原始的な姿であると見てよい。 | ||
+ | |||
+ | 陸上のように、常に水につかっていない環境では、[[生物]]にとって最も重要な問題の一つが水の確保である。陸上の[[無脊椎動物]]では、周囲が湿っていなければ活動できないものも多い。[[陸上生物]]に見られる進化的形態の多くが水の確保や[[自由水]]のない環境への適応である。[[クマムシ]]の場合も、頻繁に乾燥にさらされる環境への適応として、休眠の能力が発達したと考えられている。 | ||
+ | |||
+ | 特に[[人体]]においては、体重の60%を占める水のうち45%までが、[[細胞]]内に封じ込められた水で、残り15%が、[[血液]]、[[リンパ液]]など細胞の外にある水である。この[[細胞内液]]、[[細胞外液]]をあわせたものを[[体液]]と呼び、この体液が生命の維持、活動に重要な役割を果たす。 | ||
+ | |||
+ | 一日に排出される水の量は、静かに横たわっている成人男性で2,300mLであり、内訳としては[[尿]]1,200mL、[[糞]]200mL、[[不感蒸泄]]900mLである。1日に必要な水の量は当然2,300mLである。一般に、[[飲料水]]から1,200mL、[[食物]]800mL、代謝物300mLとして摂取される。なお、不感蒸泄とは呼気に含まれる水蒸気として体外に吐き出されたり、皮膚表面から感知できない程度に分泌される[[汗]]のことである。 | ||
+ | |||
+ | === 水素結合による利点 === | ||
+ | 水分子間における[[水素結合]]を生物は様々な形で利用し、またその恩恵を受けている。 | ||
+ | * 生体に不可欠な構成要素である[[蛋白質|タンパク質]]が必要な立体構造を作る際([[フォールディング]])に、各[[アミノ酸]]同士にはたらく水分子を仲立ちとした水素結合が重要な役割を演ずる。 | ||
+ | * 生物環境という立場から見れば、水はその(水素結合に起因する)比熱が大きいことによって温度を安定させる緩衝の意味合いが大きく、恒常性の維持に貢献していると言える。 | ||
+ | * 低温の[[固体]]が[[液体]]より上部にくることは、[[海]]や[[湖沼]]を完全凍結しにくくし、生物に生存のチャンスを与えている。液体である4℃の状態で最も密度が大きくなるという性質は水素結合の性質に起因している。 | ||
+ | * [[汗]]は非常に効率よく体温を下げる機能をもつ。水の[[蒸発潜熱]]が大きいのは水素結合が強いことに起因している。 | ||
+ | |||
+ | ===人体における水の過不足=== | ||
+ | 水の摂取量には適量というものがある。 | ||
+ | |||
+ | ==== 脱水症 ==== | ||
+ | 体内の水分量が不足した状態を医学的には[[脱水 (医療)|脱水]]と呼ぶ。水分喪失量に対して水分摂取量が不足することによって起こる。水分摂取不足、あるいは水分喪失過剰、あるいは水分摂取不足と水分喪失過剰の同時進行によって起きる。具体的には、高温の環境、重作業、激しい[[運動]]、[[発熱]]、[[下痢]]、[[嘔吐]]などが原因となって起きる。 | ||
+ | |||
+ | ==== 水中毒 ==== | ||
+ | 人体が過剰な水分を投与された場合、[[細胞外液]]の[[浸透圧]]が異常に下がり、[[低ナトリウム血症]]によって悪心、[[頭痛]]、間代性[[痙攣]]、[[意識障害]]等の症状を引き起こす。これを[[水中毒]]と言い、[[輸液]]ミス、心因性多飲、[[抗利尿ホルモン不適合分泌症候群|SIADH]]などの結果としてみられる。なお致死量は体重65kgの人で10–30リットル/日である。 | ||
+ | |||
+ | <!--(心不全の記述がここにあるのがいささか不自然。おまけに水中毒の記述の直後にタイトルも無いままに、この記述があると、見分けがつきにくくて、非常に混乱を招く。塩分量の方向性が水中毒のものと逆なのでややこしい。右の症状の原因は、本当に水の過剰とすべきなのか?それとも塩分の過剰摂取なのか?メインの項目に当たるはずの[[心不全]]の項に、これに相当する情報がなぜか記載されていない。そもそも記述内容は正しいのか? 仮に正しくても、これは[[塩]]の項目に書くべきなのでは?) {{要出典}} [[細胞]]外液の浸透圧が保たれていても、水分量が過剰な場合には[[心臓]]の負荷が大きくなり[[うっ血性心不全]]となる。原因は、[[塩化ナトリウム|塩分]]の過剰摂取であることが多い。--> | ||
+ | |||
+ | <!--(事件の具体例まで書くと、いかにもセンセーショナリズム的で、百科事典としては不適切) 水中毒の事例として、[[2007年]][[1月12日]]に[[アメリカ]]、[[カリフォルニア州]][[サクラメント (カリフォルニア州)|サクラメント]]の[[ラジオ局]]が主催した水飲み大会にて、7.6リットルの水をトイレに行かずに飲み干した28歳の女性が翌日に死亡し、[[検死]]の結果、[[水中毒]]であることが判った。また、これ以外にも[[マラソン]]後に水を大量に摂取し死亡した事例も報告されている。--> | ||
+ | |||
+ | == 水の分布 == | ||
+ | {{right| | ||
+ | [[Image:The Earth seen from Apollo 17.jpg|thumb|180px|地球の表面の約70%は海水に覆われている。 (→[[海]])]] | ||
+ | [[Image:Aletschgletscher.jpg|thumb|180px|淡水のほとんどは[[氷河]]、[[氷床]]、[[氷山]]として存在する]] | ||
+ | [[Image:Watercyclejapanese.jpg|thumb|180px|[[水循環]]のモデル図]] | ||
+ | }} | ||
+ | ===地球上の水=== | ||
+ | 地球上には多くの水が存在しており、[[生物]]の生育や[[熱]]の[[循環]]に重要な役割を持っている。[[気象学]]や[[海洋学]]などの[[地球科学]]、[[生態学]]における大きな要因の一つである。水蒸気は最大の温室効果ガスでもある<ref>Kielh, J. T.; Trenberth, K. E. (1997). "[http://ams.allenpress.com/archive/1520-0477/78/2/pdf/i1520-0477-78-2-197.pdf Earth's annual global mean energy budget]." ''Bull. Am. Meteorol. Soc.'' '''78''': 197–298 によると、温室効果のうち60%が水蒸気に由来する。第2位が二酸化炭素 (26%) である。</ref>。 | ||
+ | |||
+ | その97%が[[海水]]として存在し、[[淡水]]は残り3%にすぎない。そのほとんどが[[氷河]]や[[氷山]]として存在している。 | ||
+ | |||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | ! 位置 | ||
+ | | [[淡水湖]] || [[河川]]水 || [[地下水]]浅 || [[地下水]]深 || [[土壌]]水 || [[氷河]] || [[大気]] || [[塩水湖]] || [[海洋]] | ||
+ | |- | ||
+ | ! 存在比 (%) | ||
+ | || 0.009 || 0.0001 || 0.31 || 0.31 || 0.005 || 2.15 || 0.001 || 0.008 || 97.2 | ||
+ | |} | ||
+ | |||
+ | このなかで、'''淡水湖''' '''河川水''' '''地下水浅'''が、利用可能な水で、総量の1%未満である。 | ||
+ | |||
+ | 地球における継続的な水の循環は'''[[水循環]]'''と呼ばれている。[[太陽]][[エネルギー]]を主因として、[[固相]]・[[液相]]・[[気相]]間で相互に状態を変化させながら、[[蒸発]]・[[降水]]・[[地表流]]・[[土壌]]への浸透などを経て、地球上を絶えず循環している。 | ||
+ | |||
+ | ===太陽系の水=== | ||
+ | [[太陽系]]の[[惑星]]および[[衛星]]の表面に存在する水のほとんどは[[氷]]または[[水蒸気]]であり、[[地球]]以外で液体の水が存在する場所は少ない。相図からわかるように、液体の水が存在できる温度範囲は高圧ほど広くなる。逆に、火星のように気圧の低い環境では、液体の水は安定に存在することはできない。 | ||
+ | |||
+ | [[火星]]の表面にはかつて液体の水があったことが判明している。 | ||
+ | |||
+ | [[木星]]の[[衛星]][[エウロパ (衛星)|エウロパ]]は、内部に液体の水からなる海があるのではないかと言われている。 | ||
+ | |||
+ | ===太陽系外の水=== | ||
+ | [[2007年]][[4月]]に発見された[[太陽系外惑星]][[グリーゼ581c]]は、その質量と恒星からの距離のため、表面が[[地球]]のように岩山や海に覆われている可能性もある。 | ||
== 水の用途 == | == 水の用途 == |
2013年11月21日 (木) 07:58時点における版
テンプレート:Infobox 化合物 水(みず)は、化学的には化学式 H2O で表される水素と酸素の化合物。
常温常圧では無味、無臭、ごくわずかに青緑色を呈す透明の液体である。地球表面、特に海洋に豊富に存在する。生物の生存、日常生活をはじめ、工業や医療などに不可欠であり、人類にとって最も身近な物質の一つである。人体の60%から70%程度が水である。この様に身近である水だが、宇宙全体から見ると液体の水として存在している量は少ない。
固体は氷、液体は水、気体は水蒸気と呼ばれる。温度の高い液体の水を湯(ゆ)と言い、特に温度の高いものを熱湯(ねっとう)と言う。理・工学的な分野では熱水(ねっすい)という語も用いられる。
目次
物理的性質
テンプレート:right 常温、大気圧下で僅かに青緑色を呈す透明な液体。1気圧の大気圧下での沸点は約100[[摂氏|テンプレート:℃]](より正確には99.974テンプレート:℃)、融点は0テンプレート:℃(実際には99.974テンプレート:℃以下の水蒸気も、0テンプレート:℃以下の水も存在する)。3.98テンプレート:℃のとき最も比重が大きく、固体は液体より比重が小さい。そのため固体である氷は液体の水に浮き、氷に圧力をかけると融ける。これは多くの他の分子とは異なる水の特性であり、水分子間での水素結合によるものである。ヒドロキシル基を2つ持ち合わせている。液体の状態では 10−7 (mol/L) (25テンプレート:℃) が電離し、水素イオン(正確にはオキソニウムイオン)と水酸化物イオンとなっている。一般に無色透明と言われる場合が多いが実際にはこの電離したイオンの関係でごく僅かな青緑色を呈す。
沸点と融点が100テンプレート:℃と0テンプレート:℃というきりのいい数値であるのは、水の性質を基準として摂氏での温度の目盛りが定義されたためである。また、4テンプレート:℃のときの1cm3あたりの質量を基準に1g(グラム)を定義したり、1gの水の温度を1K(1テンプレート:℃の温度差)上げるのに必要な熱量を1cal(カロリー)と定めたりするなど、単位の基準に使われることが多かったが、不純物の存在による不正確さに加え、たとえば 1gを求める場合には、体積、圧力、温度を規定しないと正しい重量が得られないという本質的な精度の問題があるため(キログラムを参照)、近年では一意に求めることができる水の三重点が1Kの基準となるのを除けば、基準としての役割はほとんどなくなっている。
水は比熱容量が非常に大きいことでも知られる。反磁性の性質を示す代表的な物質でもある。
また、水はマイクロ波なども吸収しやすく、電子レンジはそれを利用して加熱をしている。
亜臨界水・超臨界水
水は22.1MPaの圧力をかけると374テンプレート:℃ (647K) まで液体の状態を保つ。これを亜臨界水という。これ以上の圧力、温度の状態の水を超臨界水という。その性質は通常の状態と異なりイオン積が高く通常の水より水酸化物イオンの濃度が高くなる。また比誘電率が低い。その性質を利用のため研究されている。
過冷却水
融点(1気圧では摂氏0度)以下でも凍っていない、過冷却状態の液体の水のこと。不安定であり、振動などの物理的ショックにより結晶化を開始して氷に転移する。過冷却水の入っている容器にビー玉などを落とすと、ビー玉が底に着く前に全体が氷になる。
アモルファス氷
非結晶の氷のこと。通常の氷は結晶であるが、液体からの急冷、結晶氷を加圧、あるいは気相からの蒸着などの方法により、非結晶の氷が生成される。密度の違う2つの状態が存在し、それぞれ、高密度アモルファス氷、低密度アモルファス氷という。
化学的性質
水素と酸素の電気陰性度の違いから、水分子においては酸素原子側が電気的に負となり、水分子の形から電気双極子を形成している。さらに共有結合に使われていない孤立電子対が2つ存在する。以上から水の比誘電率は 79.87 (20 ℃) と高い。このため塩化ナトリウムなどのイオン結晶の結合を破壊し、すぐれた溶媒として働く。さらに水素-酸素結合は水素結合を形成しやすく、特に電気陰性度の高く結合に利用できる電子軌道が余っている原子とは容易に水素結合を作りやすい。したがって、糖などイオン性ではない分子に対する溶媒ともなる。このため、ベンゼンなどの炭化水素はイオン性でもなく、水素結合を形成しないため、水には溶解せず分離してしまう。
以上、水はほかの物質を溶かしたり、溶けた物質のイオン化を促進する性質をもつことが分かる。このため溶媒としてよく使われる。また、多くの化学反応の触媒としても利用される。 天然の水には、僅かに重水(D2O、多量に摂取すると生物には有害)が含まれている。水素の同位元素である重水素からなるものである。重水は、化学反応の標識によく使われる。
生物と水
テンプレート:right すべての既知の生命体にとって、水は不可欠な物質である。
生物体を構成する物質で、最も多くを占めるのが水である。核や細胞質で最も多い物質でもあり、細胞内の物質代謝の媒体としても使用されている。通常、質量にして生物体の70%–80%が水によって占められている。生きている細胞には(理想的な溶媒である)水が多く含まれており、生命現象を司る化学反応の場を提供し、また水そのものが種々の化学反応の基質となっている。体液として、体内の物質輸送や分泌物、粘膜に用いられ、また高分子鎖とゲル化することで体を支える構造体やレンズにも利用されている。クマムシのように厳しい環境にも耐えられる生物は、体内の水分を放出し、不活性な状態をつくり出すことができる。
なお、生物は太古の海で誕生したと考えられている。生物の化学組成と海水の組成がにていることもその根拠の一つである。従って、水中生活が生物の原始的な姿であると見てよい。
陸上のように、常に水につかっていない環境では、生物にとって最も重要な問題の一つが水の確保である。陸上の無脊椎動物では、周囲が湿っていなければ活動できないものも多い。陸上生物に見られる進化的形態の多くが水の確保や自由水のない環境への適応である。クマムシの場合も、頻繁に乾燥にさらされる環境への適応として、休眠の能力が発達したと考えられている。
特に人体においては、体重の60%を占める水のうち45%までが、細胞内に封じ込められた水で、残り15%が、血液、リンパ液など細胞の外にある水である。この細胞内液、細胞外液をあわせたものを体液と呼び、この体液が生命の維持、活動に重要な役割を果たす。
一日に排出される水の量は、静かに横たわっている成人男性で2,300mLであり、内訳としては尿1,200mL、糞200mL、不感蒸泄900mLである。1日に必要な水の量は当然2,300mLである。一般に、飲料水から1,200mL、食物800mL、代謝物300mLとして摂取される。なお、不感蒸泄とは呼気に含まれる水蒸気として体外に吐き出されたり、皮膚表面から感知できない程度に分泌される汗のことである。
水素結合による利点
水分子間における水素結合を生物は様々な形で利用し、またその恩恵を受けている。
- 生体に不可欠な構成要素であるタンパク質が必要な立体構造を作る際(フォールディング)に、各アミノ酸同士にはたらく水分子を仲立ちとした水素結合が重要な役割を演ずる。
- 生物環境という立場から見れば、水はその(水素結合に起因する)比熱が大きいことによって温度を安定させる緩衝の意味合いが大きく、恒常性の維持に貢献していると言える。
- 低温の固体が液体より上部にくることは、海や湖沼を完全凍結しにくくし、生物に生存のチャンスを与えている。液体である4℃の状態で最も密度が大きくなるという性質は水素結合の性質に起因している。
- 汗は非常に効率よく体温を下げる機能をもつ。水の蒸発潜熱が大きいのは水素結合が強いことに起因している。
人体における水の過不足
水の摂取量には適量というものがある。
脱水症
体内の水分量が不足した状態を医学的には脱水と呼ぶ。水分喪失量に対して水分摂取量が不足することによって起こる。水分摂取不足、あるいは水分喪失過剰、あるいは水分摂取不足と水分喪失過剰の同時進行によって起きる。具体的には、高温の環境、重作業、激しい運動、発熱、下痢、嘔吐などが原因となって起きる。
水中毒
人体が過剰な水分を投与された場合、細胞外液の浸透圧が異常に下がり、低ナトリウム血症によって悪心、頭痛、間代性痙攣、意識障害等の症状を引き起こす。これを水中毒と言い、輸液ミス、心因性多飲、SIADHなどの結果としてみられる。なお致死量は体重65kgの人で10–30リットル/日である。
水の分布
地球上の水
地球上には多くの水が存在しており、生物の生育や熱の循環に重要な役割を持っている。気象学や海洋学などの地球科学、生態学における大きな要因の一つである。水蒸気は最大の温室効果ガスでもある[1]。
その97%が海水として存在し、淡水は残り3%にすぎない。そのほとんどが氷河や氷山として存在している。
位置 | 淡水湖 | 河川水 | 地下水浅 | 地下水深 | 土壌水 | 氷河 | 大気 | 塩水湖 | 海洋 |
---|---|---|---|---|---|---|---|---|---|
存在比 (%) | 0.009 | 0.0001 | 0.31 | 0.31 | 0.005 | 2.15 | 0.001 | 0.008 | 97.2 |
このなかで、淡水湖 河川水 地下水浅が、利用可能な水で、総量の1%未満である。
地球における継続的な水の循環は水循環と呼ばれている。太陽エネルギーを主因として、固相・液相・気相間で相互に状態を変化させながら、蒸発・降水・地表流・土壌への浸透などを経て、地球上を絶えず循環している。
太陽系の水
太陽系の惑星および衛星の表面に存在する水のほとんどは氷または水蒸気であり、地球以外で液体の水が存在する場所は少ない。相図からわかるように、液体の水が存在できる温度範囲は高圧ほど広くなる。逆に、火星のように気圧の低い環境では、液体の水は安定に存在することはできない。
火星の表面にはかつて液体の水があったことが判明している。
木星の衛星エウロパは、内部に液体の水からなる海があるのではないかと言われている。
太陽系外の水
2007年4月に発見された太陽系外惑星グリーゼ581cは、その質量と恒星からの距離のため、表面が地球のように岩山や海に覆われている可能性もある。
水の用途
- 生体摂取 - 生物(細胞)の活動に必須。植物は根などから吸収。動物は直接飲用、または食物より摂取
- 熱交換 - エンジン・エアコンの水冷式、ラジエーター、冷却水、打ち水
- 温度の利用 - 入浴・温泉、サウナ、床暖房装置、かき氷、かち割り
- 浮力の利用 - 船舶、水泳
- 溶媒としての利用 - 水割り、点滴、洗濯 - 超純水
- 特異な相転移の利用 - スキー、スケート
- 位置エネルギーの利用 - 水力発電、水車、波力発電、ししおどし
- 水蒸気(スチーム)の圧力の利用 - 蒸気機関、火力発電、原子力発電
- 消火剤 - 消火栓、消防用水
- 物理学実験 - スーパーカミオカンデなど(ニュートリノ検出のために超純水を活用。カミオカンデの項に原理の解説あり)
家庭での水の使用状況
一例として東京の家庭での状況を挙げると、1日で1人あたり242Lの水を使っている(2005年現在、東京都水道局調べ)。家庭での水の使用量のうち、28%がトイレ、24%が風呂、23%が炊事、17%が洗濯となっている(2002年、東京都水道局調べ)。[2]
水の供給
水の利用は都市生活の維持にとって重要なため、古代から水道が建設された(上水道・下水道)。産業利用を目的とした水利は、用水路と呼ばれる(農業用水・工業用水)。
水と哲学
古代ギリシアの哲学者タレスは、万物の根源アルケー(現代でいうところの元素のようなものだが、必ずしも物質的なものではない)は水であると考えた。エンペドクレスは、水、空気、土、火の4つのリゾーマタ(四大元素)からすべての物質が構成されるとする、いわゆる四元素説を唱えた。これはアリストテレスに継承された。
東洋においても、万物は木・火・土・金・水の5種類の元素から成るという五行説が唱えられている。
水(氷)の研究史(近代以降の主要なもの)
- 17世紀初頭 ベルギーのファン・ヘルモントは植物成長に関する実験により、水を元素と結論づけた。あらかじめ重量を測定した鉢植えに水だけを与え、4年後に重量を測定すると重量が増加していた。すなわち水元素が木元素に変換したことになる。ヘルモントはガスという用語を作り出している。ビールの発酵、石炭の燃焼、炭酸塩から発生するガスが全て同じものであり、命名もしていたが、彼自身の実験と彼のガスの関係には気づいていなかった。
- 1765年 イギリスのキャベンディッシュ、水を材料に熱の研究を行ない、蒸発熱や潜熱を測定している。
- 1766年 キャベンディッシュ、「人工空気の実験を含む三論文」を発表。第一論文で「可燃性空気」すなわち水素の発見を発表。ただし、水素の燃焼物が何であるかを理解していなかった。
- 1781年 酸素の発見者の一人イギリスのプリーストリーは水素の燃焼物が水であることを見いだし、キャベンディッシュに確認を求める。
- 1784年 キャベンディッシュが「空気に関する諸実験」を発表。水の組成を確認する実験について記述されている。実験には2年を要した。水素と酸素を電気火花によって反応させると大量の反応熱を出すため、生成物にどうしても窒素の酸化物である硝酸が混入してしまうためであった。彼の論文では水素と酸素を可燃性空気と脱フロギストン空気としているものの、水素2容積と酸素1容積から水が生成することを確認している。フロギストンによらない説明を最初に与えたのは酸素という名を命名したラボアジェであった。
- 1785年 ラボアジェが赤熱した鉄管に水を通すと水素が発生することを示し、水素、酸素こそが元素であって、水は化合物であることを最終的に確認した。
- 1791年 イタリアのボルタが酸素と水素が一定の比率で化合する性質を利用し、逆にこれらの気体の分量を測定するユージオメーターを開発した。
- 1800年 ボルタ、化学反応による電流の発生に成功。「ボルタの電堆」と呼ばれる(電池)。
- 1801年 イギリスのウィリアム・ニコルソン、「ボルタの電堆」を用いて、初めて水を電気分解した。陰極に水素が2容積、陽極に酸素が1容積発生することを示した。
- 1920年 この頃までに水素結合の概念が提唱される。
- 1933年 バナールが、水のX線構造解析を行う。
- 1935年 ポーリング、氷の残余エントロピーの理論。
- 1936年 中谷宇吉郎、雪の結晶を人工的に世界で初めて作成する。
- 1958年 アイゲン、水中のプロトン移動に関するモデルを提唱する。
- 1971年 ラーマンにより、水の分子動力学法によるシミュレーションが行われる。
- 1971年 ペイジが、水の中性子による構造解析を行う。
- 1994年 三島修が、 2 つのアモルファス氷の間(低密度⇔高密度)の一次相転移を発見。
水と芸術
水は人類にとって最も身近で重要なものであり、かつ様々な態様を見せることから、水をモチーフとした数々の芸術作品が生み出されている。
文学
- 『雪のひとひら』(ポール・ギャリコ)
- 『水妖記 ウンディーネ』(フリードリヒ・フーケ)
音楽
- 「エステ荘の噴水」(フランツ・リスト)
- 「水の戯れ」(モーリス・ラヴェル)
- 「ローマの噴水」(オットリノ・レスピーギ)
- 「水の反映」(クロード・ドビュッシー:映像第一集の中の曲)
- 「水上の音楽」(ヘンデル)
別称
- IUPAC系統名はオキシダン (oxidane) であるがほとんど用いられない。(→記事「水素化物」参照)。ほか、「一酸化二水素」「酸化水素」「水酸」「水酸化水素」といった呼び方をすることも可能である。
- 水をネタに、感情的な環境保護論を揶揄するジョークがある。(→記事「DHMO」(Dihydrogen Monoxide)を参照)
代表的な慣用句
- 水掛け論 - 田に水がほしい双方が水を掛け合ってまで争うところからきているといわれる
- 湯水のように(ごとく) - 日本ではかつて「水と安全はタダ」など言われ、水は非常に安価または無料の代名詞であったため、躊躇なく使うことを言い,通常は無駄遣いや乱費の表現として用いられる。
- 水商売または、お水 - 飲食業、あるいは風俗業の別称。一日の客数が安定しない(水物)から、もしくは酒の水割り用の水道水に値段を付ける(金を取る)ことから。
- 水に流す - 汚れ物は水に溶かして流れさるに任せるのが古来の流儀である。実際に多くの汚物は水中における自然の浄化作用とその人工的応用である汚水処理によって処理される。
他にも、世間や市場に飛び交うもの(貨幣や情報など)を水にたとえて、「洪水のような」とか「氾濫する」とかいう表現がされることがある。
参考文献と脚注
- ↑ Kielh, J. T.; Trenberth, K. E. (1997). "Earth's annual global mean energy budget." Bull. Am. Meteorol. Soc. 78: 197–298 によると、温室効果のうち60%が水蒸気に由来する。第2位が二酸化炭素 (26%) である。
- ↑ 東京都水道局
関連項目
- 海 - 海洋深層水
- 川 - 滝
- 湖 - 池 - 水たまり - オアシス
- 雨
- 地下水 - 井戸
- 水道 - 上水道 - 中水道 - 下水道
- 水質汚濁 - 地下水汚染 - 公害
- 世界水会議、世界水フォーラム
- 仮想水
- ウォータースポーツ、潜水、水泳、古式泳法
- 打ち水
- ウォーターカッター
- 水筒
- 水分
- 水毒
- セルシウス度
- 純水、超純水、軽水、重水、過冷却水
- 硬水 - 軟水 - ミネラルウォーター
- 強酸性水 - アルカリイオン水
- ポリウォーター
- 磁気活性水
- DHMO
外部リンク
- Physical properties of waterEncyclopedia of Earth にある「水の物理的性質」についての項目
- The Water Cycle:USGS(米国地質調査所)の水循環のページ。日本語訳あり。
als:Wasser am:ውሃ an:Augua ar:ماء arc:ܡܝܐ ast:Agua ay:Uma az:Su bar:Wossa bat-smg:Ondou be-x-old:Вада bg:Вода bm:Ji bn:পানি br:Dour bs:Voda ca:Aigua cdo:Cūi ceb:Tubig chr:ᎠᎹ cr:ᓃᐲᔾ cs:Voda cv:Шыв cy:Dŵr da:Vand de:Wasser el:Νερό eml:Aquaeo:Akvo es:Agua et:Vesi eu:Ur fa:آب fi:Vesi fr:Eau fur:Aghe ga:Uisce gd:Uisge gl:Auga gn:Y he:מים hi:पानी hr:Voda hu:Víz hy:Ջուր ia:Aqua id:Air ie:Aqua io:Aquo is:Vatn it:Acqua jbo:djacu ka:წყალი kg:Maza ki:Mai kn:ನೀರು ko:물 ksh:Wasser ku:Av la:Aqua lad:Agua lb:Waasser lmo:Acqua ln:Mái lt:Vanduo lv:Ūdens mk:Вода ml:ജലം mr:पाणी ms:Air nah:Ātl nds:Water nds-nl:Woater ne:पानी nl:Water nn:Vatn no:Vann nrm:Ieau nv:Tó oc:Aiga om:Bishaan (water) pdc:Wasser pl:Woda pt:Água qu:Yaku ro:Apă ru:Вода rw:Amazi sc:Aba scn:Acqua (vìppita) simple:Water sk:Voda sl:Voda sq:Uji sr:Вода su:Cai sv:Vatten sw:Maji ta:நீர் te:నీరు tg:Об th:น้ำ tl:Tubig tr:Su uk:Вода vec:Aqua vi:Nước vls:Woater vo:Vat yi:וואסער yo:Omi zh:水 zh-classical:水 zh-min-nan:Chúi zh-yue:水