「染色体説」の版間の差分
(→外部リンク) |
(SEOに熱心なMuttley (トーク) による版 377197 を取り消し) |
(他の1人の利用者による、間の1版が非表示) | |
(相違点なし)
|
2020年1月9日 (木) 11:06時点における最新版
染色体説(せんしょくたいせつ、Chromosome theory (of inheritance), 同: 染色体学説)とは、遺伝の様式を染色体の性質や挙動によって説明する学説。この学説は遺伝子が染色体上にあることを示しており、現在の自然科学では当然の前提とされる。メンデルの法則の実証、古典遺伝学の発展、分子遺伝学の基礎形成に深く関連したことで、生物学において重要である。ただしミトコンドリアDNAなど細胞核外の遺伝因子による細胞質遺伝はこれに従わない。
染色体説はバッタの染色体を用いた細胞学的観察からウォルター・S・サットンによって1902年に提唱され、トーマス・ハント・モーガンらのショウジョウバエを用いた遺伝学的研究により、1920年代ごろ確立された。提唱者の名前をとって「サットン-ボヴェリの染色体説」ともいう。発癌のメカニズムについてもテオドール・ボヴェリによる染色体説があり、これと区別する必要がある場合は「遺伝の染色体説」と呼ばれる。
目次
染色体説の背景[編集]
染色体説提唱の背景には、全ての細胞は細胞から生じるとする細胞説と、当時再発見されたばかりのメンデルの法則がある。20世紀初頭、黎明期の遺伝学と、先行して発展していた細胞学の融合から、遺伝の染色体説が誕生した。
メンデルの法則は1865年に報告されるが、歴史に埋もれ、再発見されるまで35年を要した(詳しくはメンデルの項目を参照)。遺伝の連続性が保証される背景には細胞説があり、これに基づく古典的な細胞学は、染色・観察技術の発達とともに19世紀末までには発展を遂げていた。またヴァイスマンは遺伝因子は生殖細胞にあるとする生殖質説を提唱しており、移植実験などからは細胞核に遺伝物質があることが予測されていた。1842年に発見された染色体に関しても、続く研究でさまざまな生物種における種類や数、細胞分裂において母細胞から二つの娘細胞へと受け継がれる様子などの知見が蓄積しつつあった。
このように19世紀末には染色体説の下地ができていたが、遺伝の染色体説を主張するためには、配偶子形成における染色体の挙動を示す必要があった。なぜなら、遺伝の一過程である受精では、卵子と精子の融合によって染色体数が倍加するため、あらかじめ染色体の減数が必要である。しかし、この過程に関する知見がまだ得られていなかったのである。
減数分裂における染色体の挙動と染色体説の提唱[編集]
遺伝の染色体説を明確に提唱したのはウォルター・S・サットンの1902年の論文が最初である。彼はバッタの一種 Brachystola magna を用いて減数分裂の細胞学的な研究を行い、配偶子形成における染色体の挙動がメンデルの法則に従うことを見いだした。メンデルの法則が再発見されて間もない頃である。
サットンはこの昆虫では染色体が大きくはっきりと観察できる利点を利用し、配偶子形成における染色体の観察を行った。1902年の論文「Brachystola magna における染色体群の形態について」において、配偶子形成時の細胞分裂では相同な染色体(相同染色体)どうしが対を作っており、これらが配偶子に一つずつ分配され、染色体数の半減、すなわち減数分裂が起こることを示した(右図、および減数分裂の項目参照)(Sutton, 1902)。配偶子形成における染色体の減数と分配が明らかになったことで、それまで推測の域を出なかった染色体説に対して最初の明示的な証拠が提出された。この論文の最後の段落でサットンは「この現象がメンデルの法則に従っており、これが遺伝の物理的基盤である可能性を示唆し、この主題について場を改めてすぐに紹介したい」と述べている。そして翌年の論文「遺伝における染色体」では、この仮説をより発展させ、それぞれの染色分体がランダムに分配されることから、メンデルの法則を説明した (Sutton, 1903)。
配偶子がもつ染色体の組み合わせは、体細胞の相同染色体対の累乗であり、次世代における染色体の組み合わせはさらに累乗する。つまり2組の相同染色体をもつ場合、配偶子は 22=4、次世代は 42=16 通り生じる。これはメンデルが交配実験で得た結果と合致する(具体例はメンデルの法則を参照)。さらに、この論文では一つの染色体には多数の遺伝形質が存在することを予言し、またそれらは不分離だろうと述べている(実際には組換えが起こる)。
ここにおいて弱冠25歳の大学院生だったサットンによって細胞学から遺伝現象へと手が差し伸べられたのである。後に遺伝学的手法により染色体説を実証したモーガンやスターティヴァントは「サットンの仮説で染色体説は既に完成していた」と著書や講演の中で述べている。
サットン以外にも染色体説を考えていた学者は少なからずいた。ウィルソンは1902年の論説「メンデルの遺伝の原理と生殖細胞の成熟」でサットンの他にW・A・キャノンとテオドール・ボヴェリに触れている (Wilson, 1902)。コロンビア大学の学生だったキャノンは、やや直接的ではないもののサットンとは独立に、綿花を用いた妊性の実験から同様の結論に到達していた。彼の論文は1902年に発表されている。ウィルソンが染色体説を「サットン-ボヴェリの染色体説」と呼んだことからもわかるように、ドイツの細胞学者テオドール・ボヴェリも同時期に同様の構想をもっていたと言われる。しかし彼はこの時期には直接的に染色体説を示唆する論文を書いていない。ただしウマノカイチュウやウニを用いて研究を行っており、受精卵の染色体は卵と精子から半分ずつ由来することや、卵の細胞核を除いて受精させてもある程度まで発生が進むことを観察していた。これらは染色体説を支持する観察である。
遺伝学による実証[編集]
ほぼ完成した仮説であったにも関わらず、サットンの染色体説はすぐには受け入れられなかった。理由はいくつかある。まず当時はメンデルの法則が再発見されて間もないころであり、遺伝子の存在に対してすら懐疑的な学者も多くいたことは留意する必要がある。染色体説を実証したモーガンも粒子遺伝をすぐには受け入れなかったし、自らが証明することになる染色体説に対しても確証する結果が得られるまで長らく懐疑的だった。また染色体の数は遺伝子の数に比べて圧倒的に少なく、しかも線状であるため、粒子状の遺伝因子のイメージと相容れないものがあった。もう一つ大きな理由は、サットンの仮説が観察のみに基づくものであり、実証がなされなかったことである。他の研究者を納得させるには、実験による実証を必要とした。しかし、バッタを用いていたサットンはこれを可能にする遺伝学的な術を持たなかったし、他の多くの研究者も同様だった。「遺伝学 Genetics」という言葉が作られるのは1906年のことであり、遺伝学はまだ揺籃期にあった。実証はモーガンらによる遺伝学の発展を待たねばならなかった。
伴性遺伝と性染色体[編集]
染色体が遺伝子の担体であることを実証したのはトーマス・ハント・モーガンと彼の研究室が輩出した、いわゆるモーガン学派の研究者達である。彼らは飼育が容易で世代交代の速いショウジョウバエを用いて遺伝学を発展させ、変異体の交配による遺伝学的解析と染色体の観察から、染色体説を実証していく。古典遺伝学の発展と染色体説の実証は、彼らの研究成果の表裏であると言うこともできる。
1904年、ウィルソンの招請によりジョンズ・ホプキンズ大学からコロンビア大学に移ったモーガンは、発生学から転向し、1907年ごろからショウジョウバエを用いた遺伝学研究を始める。染色体説を提唱したサットンを輩出した細胞学の大家ウィルソンとの交流は、モーガン学派による染色体説の発展を促進した。
モーガンは1910年に最初の突然変異体 white(白眼)を発見し、これを用いた交配実験の結果から遺伝子と染色体の関連性を強く示唆する結果を得た(右図参照)。ショウジョウバエのX染色体は1908年にウィルソン研究室のネティ・スティーブンズによって発見されており、メスはX染色体を二本、オスは一本もっていることがわかっていた。純系赤眼のメスと白眼のオスを交配させると、次世代ではオスメスともに赤眼の個体が得られた。これは赤眼が白眼に対して優性なためである。ここで得られたメスと赤眼のオスを交配すると、次世代においてメスは全て赤眼だったが、オスでは赤眼と白眼が半分ずつ生まれた。白眼の変異がX染色体上にあり、伴性遺伝するためと考えると、この現象をうまく説明できる。この結果をより普遍化すると、染色体と遺伝との関連性が明確に示唆されていると言える。
染色体遺伝学の成熟に伴う確証[編集]
連鎖の概念: それぞれの形質をアルファベットで表し、大文字は小文字に対して優性であるとする。独立の法則によると、AaBb 個体どうしの交配では、次世代の形質は AB:Ab:aB:ab が 9:3:3:1 の比で生じるはずである。しかし実際には Ab:AB:aB が 1:2:1 で生じ、A と b、a と B が独立して遺伝しない例が見つかった。これは A と b、a と B が同一の染色体上にあると考えると解決する(図)。これが連鎖の概念であり、これに従うと配偶子には Ab と aB が 1:1 (2:2) で分配される。
Ab | aB | |
Ab | AAbb (Ab) | AaBb (AB) |
aB | AaBb (AB) | aaBB (aB) |
次世代では Ab+Ab, Ab+aB, aB+Ab, aB+aB の組み合わせができ、形質は Ab:AB:aB = 1:2:1 に分離する(表)。一方、別々の染色体上にある A,a(または B,b)と D,d は配偶子に AD:Ad:aD:ad = 1:1:1:1 の比に分配され、次世代の形質は独立の法則に従い、AD:Ad:aD:ad = 9:3:3:1 に分離する。
1911年からはブリッジス、スターティヴァント、マラーなど、その後のショウジョウバエ遺伝学に貢献する研究者達が学生として研究室に参加し、多くの突然変異体を単離しはじめる。これらの変異体の交配実験の結果から、ある二つの変異体の間では、遺伝の法則の一つ「独立の法則」に従わない例が見いだされた(右コラム参照)。既にサットンによって予測されていたが、実際に得られたこの結果と考察から連鎖という概念が作られた。多くの変異を用いて交配実験を行った結果、それぞれの変異は4つの連鎖群に分けられた。ショウジョウバエの染色体は4組あり連鎖群の数と同じであった。これは遺伝子が染色体上にあることを強く裏付ける結果である。
独立の法則はそれぞれの形質が独立して遺伝するというものであり、個々の遺伝因子が「粒子状」で存在していることを想像させるが、メンデルは偶然に別々の染色体に由来する形質を観察していたのである。
交配では組換えが起こることも見いだされた。組換えとは同じ連鎖群に含まれており、図のような Ab と aB の連鎖が AB と ab の連鎖に変わる現象である。これに先立って、減数分裂において染色体の一部が入れ替わる交叉が観察されており、交叉を組換えの物理的現象と考えるとうまく説明がつく。つまり遺伝子が染色体上に線状に配置されており、組換えは交叉により染色体の一部が入れ替わったと考えられるのである。また、近くにある遺伝子ほど組換えが起きにくいという推測から、スターティヴァントは線状に遺伝子の場所を特定することを発案し、遺伝子地図が作られていった。組換え価の単位として用いられる cM(センチモルガン)は、モーガンの業績を讃えてつけられたものである。
さらにブリッジスによる染色体不分離の発見が、染色体説を確固たるものにした。染色体不分離とは減数分裂において相同染色体が分離しない現象であり、例えば性染色体では XXY や XO といった組み合わせをもった個体を生じる。交配では低頻度ではあるが連鎖や組換えでも説明できない、遺伝の法則に従わない形質を示す個体が得られる。これらの染色体を観察すると染色体数が異常であり、染色体不分離を起こした配偶子から得られた個体であると考えられた。それまでの連鎖や組換えは確からしい結果であったが、飽くまで間接的な証拠であった。この染色体不分離という遺伝現象の例外こそが、染色体と形質を同時に観察可能にし、染色体説の決定的な証拠となったのである。
伴性遺伝と性染色体、連鎖群と染色体数、組換えと交叉、そして染色体不分離の実験と観察から得られた結果は、遺伝子が染色体上にあるとする考えが妥当であることを示し、染色体説を受容させるに十分であった。このようにして、1920年代までには遺伝子は染色体上に線状に配列していることが、揺るぎない事実として認められるようになった。この業績によりモーガンは1933年にノーベル生理学・医学賞を受賞する。
また1933年、モーガンがノーベル賞を受賞するよりも前、テキサス大学のペインターによって多糸染色体が発見された。双翅目昆虫の幼虫にある唾液腺という組織では、細胞が細胞分裂を伴わない染色体の増幅を行うため、通常の1,000倍ほどの太さで観察することができるのである。この巨大な染色体を用いた染色体異常などの観察結果も、モーガンらの説をより直接的に裏付けるものだった。染色体にみられる縞状のパターンは遺伝子地図と結びつけられ、その後、他のモデル生物でも逆遺伝学やバイオインフォマティックスなどで重要なツールとして用いられている。
染色体説以降[編集]
サットンが提唱した染色体説がそのまま受け入れられたわけではないが、遺伝学的研究により、その内容は正しいと認められた。しかしその後、遺伝子の実体に関する探究は研究手法などの限界もあり、しばらく下火となる。モーガンはノーベル賞受賞講演において遺伝子の物理的実体にはあまり関心が払われていないことを指摘している。
遺伝子の実体が DNA であることが明らかにされるには、生化学や構造生物学の発展を要し、さらに10年ほどが経過する。またその間、分子生物学発展の駆動力となったファージの遺伝学でも染色体説に基づいた研究が行われた。生化学的、分子遺伝学的研究から染色体は DNA とタンパク質から成っていることがわかり、その後、生化学的、分子生物学、生物物理学的に遺伝子の物理的実体が DNA であることが明らかにされた。
現在の生物学・医学では染色体説は当然の前提として扱われ、遺伝学の基礎として教えられるが、実際の研究においては科学史的な観点以外では意識されない。
年表[編集]
- 1842年: カール・ネーゲリが染色体を発見。
- 1865年: グレゴール・ヨハン・メンデルによる遺伝の法則の発表。
- 1892年: ヴァイスマンが生殖質説を提唱。
- 1898年: ウォルター・S・サットンが修士課程の学生としてマクラング(カンザス大学)の研究室へ。
- 1900年: サットンがウィルソン(コロンビア大学)の研究室へ。
- 1900年: ド・フリース、チェルマク、コレンスらによるメンデルの法則の再発見。
- 1901年: マクラングがバッタで性染色体を報告。
- 1902年: サットンがバッタの減数分裂における染色体の挙動を報告、ここから遺伝の染色体説を提唱。
- 1903年: サットンはさらにこの説を明確に主張する論文を発表。
- 1904年: モーガンがコロンビア大学へ。
- 1905年: ネティ・スティーヴンズが甲虫コクヌストモドキで性染色体を報告。ウィルソンもハエやバッタで確認。
- 1906年: ベイトソンによって遺伝学 Genetics という言葉が作られる。
- 1908年: スティーヴンズがショウジョウバエでX染色体を確認。
- 1909年: ヨハンセンによって遺伝子(独: Gen, 英: Gene)という言葉が作られる。
- 1910年: モーガンの研究室でショウジョウバエの最初の突然変異体 white が発見される。
- 1910-20年代: ショウジョウバエ遺伝学による実証。
- 1914年: ボヴェリが「発癌の染色体説」を提唱。
- 1933年: ペインターが双翅目昆虫の唾液腺で多糸染色体を発見。
- 1933年: モーガンがノーベル生理学・医学賞を受賞。
参考文献[編集]
- E. W. Crow and J. F. Crow. " 100 Years Ago: Walter sutton and the Chromosome Theory of Heredity.]" Genetics, 160 1-4, 2002. (Review) [1]
- L.A.-C.P. Martins. "Did Sutton and Boveri propose the so-called Sutton-Boveri chromosome hypothesis?" Genetics and Molecular Biology, 22 (2) 261, 1999. (Point of view)
- T. H. Morgan. "Nobel Lecture: The relation of genetics to physiology and medicine." June 4, 1934. (Lecture) [2]
- T. H. Morgan. "Croonian lecture: On the mechanism of heredity", June 1, 1922, Proceedings of the Royal Society, B 94:162-197. (Lecture) (*)
- W. S. Sutton. "On the morphology of the chromosome group in Brachystola magna" Biological Bulletin, 4:24-39, 1902. (Primary) (*)
- W. S. Sutton. "Chromosomes in heredity" Biological Bulletin, 4:231-251, 1903. (Primary) (*)
- E. B. Wilson. "Mendel's principles of heredity and the maturation of the germ cells" Science, 16:991-993, 1902. (Perspective) (*)
- 渡辺政隆 『DNAの謎に挑む』朝日選書608, 朝日新聞社 1998年
- デービッド・アボット編『世界科学者事典 —1 生物学者』原書房 1985年
(*) は Electronic scholarly publishing から PDF を入手できる。
外部リンク[編集]
- Walter S. Sutton - カンザス大学の Stanley R. Nelson 博士によるサットンに関するページ。
このページはウィキペディア日本語版のコンテンツ・染色体説を利用して作成されています。変更履歴はこちらです。 |